Third Year Reactive Intermediates: Radicals, Arynes, Carbenes etc.

Radicals

References:

Moody and Whitham "Reactive Intermediates," Oxford Chemistry Primer 8; Carey and Sundberg "Advanced Organic Chemistry" Part A, Chapter 12 and Part B, Chapter 10; March "Advanced Organic Chemistry" 4th ed., Chapters 5, 7 + 14;

Notes:

Augment your notes from 2nd/3rd year lectures to ensure they include the following:

- 1. Radical Generation: Thermolysis of weak bonds; Photolysis of weak bonds; 1-electron redox chemistry; Chain processes; Selectivity and reactivity; Polar effects (nucleophilic and electrophilic radicals) and "polarity matching"
- 2. Synthesis with radicals: Reactions between radicals and non-radicals; Reactions between radicals and other radicals; Types of reactions (addition, substitution, elimination, rearrangement, electron transfer ($S_{RN}1$); Use in making C-C, C-H and C-Hal bonds; Stereochemical effects; Cyclisations and Baldwin's Rules.
- 3. Specific Topics: Bu_3SnH reductions; Barton-thiohydroxamic esters; Barton-remote functionalisation (nitrite ester photolysis); Radicals in aromatic substitution e.g. diazonium salts + Cu(I); Kolbe synthesis; Hunsdiecker reaction; Fremy's salt; Birch reduction, acyloin reaction and reductive dimerisation of ketones.

Other Reactive Intermediates

Reading: Lecture Notes (for reference when you have them); "Reactive Intermediates", Moody and Whitham, OCP no 8; "Polar Rearrangements", L. M. Harwood, OCP no 5

Carbocations and Carbanions

Structure and Reactivity a) Basics; susceptibility to nucleophiles / electrophiles, e- rich or poor species etc. b) Pyramidal inversion for C- and exceptions, planarity of C+. c) Evidence ego C+ - kinetics of $S_N 1$, solvent and substituent effects (Hammet plots), crystal structures i.e. bond lengths and hyperconjugation, stable C+. d) Formation e.g. C- - $S_E 1$, Lihalogen exchange, deprotonation etc.

Reactions a) Rearrangements: concerted vs stepwise arguments (both C+ and C-). b) C- as nucleophiles, bases, reducing agents (via SET).

Carbenes

Structure and Reactivity

- a) singlet and triplet states
- b) substituent effects on reactivity
- c) evidence for structures i.e. matrix isolation, ESR etc

Generation

- a) Diazo Compounds stabilisation by carbenoid formation with TM complexes
- b) Tosylhydrazones Bamford Stevens Reaction
- c) Ketenes tendency to polymerise
- d) Strained Rings egm driven by relief of ring strain

- e) Ylides formal equivalents ie carbene transfer reagents
- f) Strained Alkenes only if sterically unfavourable
- g) Heterocycles if provides stable fragment but needs high T
- h) a Elimination note ease of elimination I > Br > CI > F
- i) Simmons Smith Reaction stereospecificity

Reactions

- a) Cycloadditions Skell Hypothesis ring enlargement with aromatic compounds
- b) Insertion into C-H stereochemical consequence of singlet / triplet chemoselectivity substituent effects
- c) Insertion into X-H
- d) Rearrangements i) facile process due to electrophilic nature; ii)Wolff rearrangement (use in Arndt Eistert Rxn); iii) Skattebol Rearrangement
- e) With Nucleophiles Ylid formation and Riemer Tiemann Rxn of phenoxides.

Nitrenes - note similarity to carbenes

Structure and Reactivity

- a) singlet and triplet states
- b) substituent effects on reactivity
- c) evidence low T matrix isolation studies, ESR etc...

Generation

- a) Azides
- b) Isocyanates hv only
- c) Oxidation of hydrazines with Pb(IV), MnO2 etc
- d) Ylides
- e) Small rings hv on oxaziridines
- f) Heterocycles if stable fragment formed
- g) Elimination base mediated h) Reduction of nitro / nitroso groups with P(III)

Reactions

- a) Cycloadditions i. aziridine formation; ii. ring expansion with aromatics
- b) Insertion selectivity of C-H
- c) Rearrangements possible involvement in rearrangement to electron deficient N => Hofmann, Lossen and Curtius rearrangements
- d) With nucleophiles ylid formation

Arynes

Structure and Reactivity

- a) possibility of o-/m-/p-derivatives
- b) evidence for structures
- c) stabilisation by complexation

Generation

- a) Aryl anions isotopic labelling experiments, directing substituents
- b) Zwitterions
- c) Thermal / photochemical fragmentation if form thermally stable fragment
- d) Oxidative Fragmentation
- e) Bergmann Cyclisation of 1, 3 enediynes

Reactions

- a) Cycloaddition only if generated in the absence of a nucleophile; Diels Alder, Ene, [2+2] reactions etc 1,3 dipolar additions, trimerisation reaction etc
- b) Nucleophilic addition i. order of reactivity; ii. with amines / phosphines etc; iii. steric / electronic substituent effects

2000 Q4. Give mechanisms for FIVE of the following reactions which proceed by radical intermediates:

[5 x 4 marks]

(b)
$$COCl$$

$$\frac{(Me_3Si)_3SiH}{AIBN, toluene, heat}$$

Turn over

(a)
$$\frac{Bu_3SnH}{AIBN \text{ (trace)}} O \xrightarrow{H} Ph$$

(b)
$$CO_2Me$$
 CO_2Me CO_2Me CO_2Me CO_2Me CO_2Me CO_2Me

(d) ONO
$$hv$$
 HON

Turn over

2002 Q2. Answer *both* part **A** and part **B**.

Part A. Give mechanisms to explain how *two* of the following reagents initiate free radical reactions. $[2 \times 2]$

(a)
$$NC$$
 $N \in \mathbb{N}$ CN (b) Ph O Ph (c) H_2O_2/Fe^{2+t} $AIBN$

Part B. Explain the chemistry in *four* of the following.

$$[4 \times 4]$$

$$(f) \qquad \qquad hv, \qquad N \qquad N \qquad N$$

TURN OVER

7. Answer BOTH parts A and B of this question.

A. Rationalise the following *THREE* pairs of reactions.

 $[3 \times 4]$

$$\begin{array}{c|c} \text{(ii)} & & \\ & \text{Br} & \\ \hline & \text{dark} & \\ \end{array}$$

B. Suggest mechanisms for *TWO* of the following reactions.

 $[2 \times 4]$

2005 Q6. Give mechanisms for *five* of the following processes, and comment on those factors which lead to the observed product outcome.

 $[5 \times 4]$

(a)
$$H \xrightarrow{SnPh_3}$$
 (2 eq.) $+$ $SnPh_3$ heat

(b)
$$\begin{array}{c} O \\ (i) \ Hg(OAc)_2, \ CH_3CO_2H \\ (ii) \ NaBH(OMe)_3 \\ \\ OAc \\ \end{array}$$

$$(d) \quad \underbrace{\mathsf{Br}}_{\mathsf{EtO}} \quad \mathsf{Br} \quad + \quad \underbrace{\mathsf{Bu_3Sn}}_{\mathsf{Bu_3SnH}} \quad \underbrace{\mathsf{CO_2Et}}_{\mathsf{Bu_3SnH}} \quad \underbrace{\mathsf{Bu_3SnH}}_{\mathsf{heat}} \quad \underbrace{\mathsf{CO_2Et}}_{\mathsf{EtO}} \quad \underbrace{\mathsf{CO_2Et}}_{\mathsf{CO_2Et}}$$

2006 Q5. Answer *both* Parts **A** and **B** of this question.

Part A.

Outline the relevance of (i) steric, (ii) resonance and (iii) hybridisation effects upon the stability of carbon based radical intermediates.

Part B.

Give mechanisms to rationalise the observed product outcome for *four* of the following reactions.

 $[4 \times 4]$

8 **DCHC 2781**